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A microburst can be modelled by releasing a volume of fluid that is slightly heavier 
than the ambient fluid, allowing it to fall onto a horizontal surface. Vorticity 
develops on the sides of this parcel as it descends and causes it to roll up into a 
turbulent vortex ring which impinges on the ground. Such a model exhibits many of 
the features of naturally occurring microbursts which are a hazard to aviation. In  
this paper this model is achieved experimentally by releasing a volume of salt water 
into fresh water from a cylindrical dispenser. When care is taken with the release the 
spreading rate of the surface outflow is measurable and quite repeatable despite the 
fact that the flow is turbulent. An elementary numerical approximation to this 
model, based on inviscid vortex dynamics, has also been developed. A scaling law is 
proposed which allows experiments with different fluid densities to be compared with 
each other and with the numerical results. More importantly the scaling law allows 
us to compare the model results with real microbursts. 

1. Introduction 
Downbursts are wind systems, potentially hazardous to aircraft, which occur when 

downdraughts, caused by rapid evaporation, melting and precipitation drag, fall to 
Earth and spread outward along the surface. When aircraft fly through such a 
structure, on take off or landing, the rapidly varying horizontal wind velocities 
(windshear) can cause accidents unless proper strategy is followed. Fujita (1985, 
1986) has written several books documenting this phenomenon, and has invented the 
words ‘downburst’ and ‘microburst’ to describe it (Fujita 1981). The term 
microburst refers to an intense downburst with horizontal extent less than 4 km, the 
scale felt to be most dangerous to aircraft. Proctor (1988) presented large-scale 
numerical simulations which included turbulence modelling and cloud microphysics. 

In this paper we present a simple microburst model which can be approximated 
numerically and created in a laboratory experiment. A volume of fluid which is 
slightly heavier than its surroundings is released to fall onto a horizontal surface. 
This provides an experimentally repeatable laboratory microburst. Scorer (1957) 
modelled thermals in this way, without the ground effect. A laboratory microburst 
such as this has been photographed by Fujita (1985), but we are not aware of any 
quantitative measurements. Clearly the model does not include the many complex 
meteorological factors which cause an intense local downdraught to occur. The real 
causes of the phenomenon make microbursts extremely variable and therefore not 
easily amenable to laboratory investigation. We hope to extract some of the features 
common to all microbursts with this model. We will compare experiments with the 
results of an elementary numerical model which approximates the physical situation. 
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Our numerical model is similar to one used by Dahm, Scheil & Tryggvason (1989) in 
their experimental and numerical study of vortex interaction with a density 
interface. 

Elementary models have been developed by Ivan (1986) and Zhu & Etkin (1985) 
which are of value to engineers developing avoidance strategies and detection 
schemes. These consist of a stationary vortex ring and dipole disk, respectively. Since 
a microburst can change considerably during the time it takes an airplane to traverse 
it we feel there is a need for a simple dynamical model which captures the essential 
physics of the process and can be realistically scaled to represent a full size 
microburst. We stress that we want an elementary (and economical) model for this 
purpose. 

In the simplest kind of mathematical modelling of an idealized microburst we 
neglect diffusion between the heavier and lighter fluids so there is always a sharp 
density discontinuity across the separating interface ; mixing consists only of gross 
folding and rolling-up of the interface. We assume that the fluid is incompressible 
and that the density difference Ap is small enough to use the Boussinesq 
approximation. The appropriate non-viscous equations are 

v - u  = 0, (1.1) 

where p' is zero in the lighter fluid and equal to Ap in the downburst parcel. The small 
number of parameters in the problem can be absorbed by changing variables. As a 
characteristic length we use the equivalent spherical radius R, of the downburst 
parcel, and we introduce a characteristic time 

All lengths are made dimensionless with Ro, time is made dimensionless with T,, and 
velocity is made dimensionless with V, = R,/T,. Using the same notation for the . .  

dimensionless variables, we have 
v*u = 0, 

- du = -Wp-I&, 
dt 

where I is unity in the microburst material and zero elsewhere. Therefore all physical 
variables have been absorbed into the length- and timescales. This almost trivial 
result, which we believe to be a new idea in this context, gives an important scaling 
law which relates model studies to full-scale microbursts. We can easily compare 
numerical results with experimental model results taken with different values of R, 
and Ap since we can construct the length- and timescales required for dimensionless 
presentation. We have only to require geometrical similarity of the compared flows. 
To compare with real microbursts it is necessary to establish effective values of R, 
and T, indirectly, from aircraft flight recorders and meterological Doppler radar 
data. Here the value is in being able to realistically calibrate the numerical model in 
order to use it for the study of aircraft survival strategies. 

There is also a possible dependence on a Reynolds number defined by 

R e = - ,  RO 6 .  
V 
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however, large-scale turbulent flows are only weakly dependent on Reynolds 
number. As will be seen we find Reynolds-number dependence in the model 
experimental data only at the lowest Re values, i.e. at small values of Ap. 

Density stratification of the ambient atmosphere introduces another possibly 
important parameter. While this effect could be studied by constructing salt 
stratification in our experimental tank we have decided not to include these 
complications in the present study. This decision is partly based on the knowledge 
that the Dallas-Fort Worth microburst, to which we refer later, occurred under 
neutrally stable conditions as shown by nearby meteorological surroundings. 

It is useful here to give a discussion of the similarities and differences between 
turbulent vortex rings and thermals since our microburst mode resembles the latter 
until it is modified by interaction with the ground. 

Vortex rings are produced experimentally by pushing a slug of fluid from a 
cylinder or through a hole in a flat plate by moving a piston. A vortex ring rolls up 
from the shear layer which accompanies the slug and is developed by the time the 
slug moves about a diameter. The circulation f is approximately the piston speed 
times the distance it moves. Maxworthy (1972, 1974) showed that the ring becomes 
turbulent when the Reynolds number f / v  is greater than about 600, and not only is 
the vortex core turbulent but an ellipsoidal ‘bubble ’ of fluid moving with the vortex 
ring is also turbulent. Maxworthy gave experimental support to the following 
physical picture. The comoving turbulent bubble entrains non-turbulent fluid into 
its front and ejects most of it into a wake along with some of the vorticity of the ring. 
A small amount of the entrained fluid is retained causing the ring core and bubble 
to slowly increase in size. The loss of circulation to the wake slows the vortex down, 
halving the initial velocity by the time it has travelled about 10 initial diameters. 
Maxworthy estimated the effective drag coefficient based on the projected area of the 
bubble to be about 0.04. 

In Scorer’s (1957) thermal model, and in our microburst model, a parcel of heavier 
fluid is dropped from rest into a surrounding lighter fluid and develops into a vortex 
ring through baroclinic vorticity generation by the time it has fallen a diameter or 
less. It is clear from Scorer’s photographs (and our figure la) that the comoving fluid 
bubble is turbulent. Because of the weight of the fluid there are important differences 
from a constant-density vortex flow. There is entrainment into the front of the 
bubble but very little wake. The fluid which is entrained at the front swirls back 
around the vortex core from the rear causing the vortex core radius and the size of 
the bubble to increase. Further, because very little vorticity is lost to a wake the 
circulation stays constant. Scorer’s study of the flow pattern in a thermal and his 
photograph from the rear of a model thermal showing a hollowed-out region of clear 
fluid at  the centre of the vortex ring both support this conclusion. The velocity of a 
vortex ring is proportional to the circulation and inversely proportional to the radius 
of the ring. Therefore the velocity of the falling parcel increases at first as the heavier 
fluid accelerates. It reaches a nearly constant velocity as the circulation becomes 
fully developed and then gradually slows down as the vortex ring and bubble 
increase in size. Whereas the turbulent vortex ring slows down because of loss of 
circulation, the turbulent thermal slows down because it gets larger. 

Turner (1957) analysed the growth of a constant-circulation buoyant vortex ring 
in terms of its impulse (essentially its momentum) by means of the simple formula 

A D  ul - _  - w, dt 
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FIGURE 1 (a+). For caption see facing page. 

where P = npTR2 is the impulse, W is the constant weight of the vortex ring and its 
comoving bubble and R is the ring radius. This leads to Turner’s result 

In  order for the impulse to  increase, as (1.7) demands, without increasing the 
velocity, the mass of the turbulent bubble must increase. 



Microburst modelling and scaling 465 

FIQIJRE 1. Simulated microburst. Applp = 0.03, 4 in. release. Approximate times from release 
T/T,; (a) 3; ( b )  6.5; (c) 8; ( d )  9; (e) 11.5. 

If we modify Turner’s formula to  

- _  dP - W-D, 
dt 

where D is the drag, and estimate the drag by using Maxworthy’s drag coefficient (we 
believe the drag coefficient is actually much smaller than this) we find that the drag 
is less than 1 YO of the weight and therefore quite negligible anyway. 

Our experimental set-up is described and the experimental results are shown in § 2 
and the numerical model is presented in detail in $3 and compared with real 
microbursts in $4. 

2. Experimental arrangement and results for a simulated microburst 
A salt-water solution containing Kaliroscope (crystaline platelets, approximately 

cm thick and lov3 cm across) or laser-fluorescent dye, or both, for visualization, 
is dropped into fresh water from a cylindrical container onto a raised circular 20 in. 
diameter glass plate which simulates the ground. The cylinder and plate are 
contained in a glass-walled tank, 2 f t  on a side, filled with about 12 in. of water above 
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FIQURE 2. Bottom view of simulated microburst. Ap/p = 0.03, 4 in. release. Approximate times 
from release: (a) 11.0; ( b )  18.2; (c) 22.5. 

the plate. The cylinder is plastic with solid walls, open at  the bottom and drilled at 
the top to about 50% solidity. The cylinder is held rigidly from above by a hollow 
rod. We cover the open end of the cylinder with a thin stretched latex sheet, fill it 
with salt water of the desired density, and carefully burst the latex sheet with a 
needle inserted from above through the hollow support rod. The simulated 
microburst is illuminated from the side by either a high-intensity laser sheet or by 
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Identifier 

V10301 
V10303 
V10305 
V10310 
V20305 
V203 10 

V 10405 
V10410 
V20405 
V20410 

APlP R,( (mm) T,(4 
0.01 26.66 0.516 
0.03 26.66 0.298 
0.05 26.66 0.231 
0.10 26.66 0.163 
0.05 33.99 0.261 
0.10 33.99 0.184 

0.05 26.66 0.231 
0.10 26.66 0.163 
0.05 33.99 0.261 
0.10 33.99 0.184 

Re 

1377 
2385 
3077 
4360 
4427 
6279 

3077 
4360 
4427 
6279 

TABLE 1.  The experimental cases studied 

a bright incandescent light, depending on the desired effect, and the event is recorded 
by video camera. The microburst takes the form of a descending vortex ring which 
flows outward along the surface and finally runs off the edge of the circular glass 
plate, draining the heavier liquid into the space below the plate. To minimize edge 
effects we make observations only while the microburst front is within 7 in. of the 
centre of the plate. After four runs the tank is drained, cleaned and refilled. 

The main cylindrical container has a 45 mm inside diameter and a 45 mm inside 
height. The cylinder is filled slowly through a thin tube while in place above the 
plate. For definiteness it is filled to the top of the drilled holes. Including a small 
correction for the volume of the drilled holes, the equivalent spherical radius of the 
dropped volume is R, = 26.66 mm. A second, larger cylinder is geometrically similar 
with R, = 33.99 mm. In two series of experiments presented here we place the 
bottom of the cylinder a distance H,, = 2.86 R, and H ,  = 3.81 R, above the glass 
plate. (These heights are 3 in. and 4 in. respectively, for the smaller cylinder.) 

Figure 1 shows a typical experiment, photographed from the television monitor. 
This is from the 4 in. series with Ap/p = 0.03, and it is illuminated by laser light. The 
approximate dimensionless times after release are shown in the figure caption. The 
sense of rotation in the vortex ring gives outward velocities near the ground, a 
clockwise sense in the left half of the figures. Vorticity with the opposite circulation 
(counter-vorticity) is generated by friction with the ground. Counter-vorticity is 
swept upward along the front of the vortex. This can be seen as the small surface 
features in figures 1 (c-e). The sense of rotation of these surface swirls is clearer in the 
action video. The visually apparent slowly descending central column is exaggerated 
by the laser illumination of dye which remains from the starting process, not much 
of the salt water remains in this location. This effect is not so visible with 
incandescent lighting. 

Figure 2 shows a sequence of views from below, using a 45" mirror and illumination 
by a horizontal laser sheet just above the glass surface. Dye is used for visualization. 
This shows fairly good axial symmetry, but with pronounced petal-like lobes along 
the gust front. This interesting feature has not previously been reported for 
microbursts, but a similar effect has been observed at  the front of gravity currents 
and has been explained by Simpson (1972) to be due to a convective instability of a 
thin layer of light fluid which has been overrun by the heavy fluid. 

Quantitative results have been obtained from the video records of a number of 
microburst releases by using a digitizing cursor on the television monitor. The 
quantities measured were the maximum radius R of the microburst image (half the 
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V10301-1 

0 V10301-2 
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* V103014 

+ V2031CL1 

x V20310-2 

w V2031CL3 

V 2 0 3 1 H  
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0 1 2 3 4 5 6 I 

RIR,  

FIGURE 3 ( a ) .  For caption see facing page. 

apparent diameter) and its minimum distance H above the ground. These quantities 
have been presented as RIR, and H/Ro versus TIT,, where R, and T, are the length- 
and timescales defined in $1. The first objective is to show that the results are 
independent of Reynolds number (for large Reynolds number) when presented in this 
dimensionless form. 

Table 1 identifies all of the experimental cases. In  the identifier column V1 or V2 
refer to the small or large cylinder, 03 or 04 are the 3 in. or 4 in. series, and the last 
two digits are Aplp for the salt solution (01 means Aplp = 0.01). When the large 
cylinder is used we still refer to the experiments as the 3 in or 4 in. series, but the 
initial height is actually larger by the ratio of the lengthscales of the cylinders. 

Figure 3(a )  presents R/Ro versus T/T, for the 3 in. series for the smallest and 
largest Reynolds number showing all the data from 4 runs with each Reynolds 
number, identifying each run by a different marker to show how well the experiments 
can be repeated. The curves are least-squares fits to each set of 4 runs. Figure 3 ( b )  
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shows all the 3 in. series data with one marker for each set of four runs in each of the 
six Reynolds number categories. There is a clear Reynolds number effect for low 
values of the Reynolds number with the results becoming independent of Reynolds 
number for large values. Figure 3 ( c )  contains least-squares fits to the data from figure 
3 ( b ) ,  and the data points are omitted in order to more clearly see the Reynolds- 
number trend. The figure also contains the results from computations which will be 
described in the next section. The open circles are data points from the DL 191 
microburst which occurred at Dallas-Fort Worth airport on 2 August 1985. These 
data were obtained from Fujita (1986, figure 5.9). The length- and timescales used 
were Lo = 0.7 km and T, = 23 s, determined so that the two earliest data points agree 
with the 3 in. data. This establishes the scaling for DL 191. 

Figure 4 shows HIR, versus TIT, for the 3 in. series. Figure 4(a) contains all the 
data and figure 4(b) compares least-squares fits to the data to the result from the 
numerical simulation. There is no definite trend with Reynolds number in this case, 
only scatter. The experimental microbursts accelerate at first and reach a nearly 
constant velocity by the time they have fallen about half a diameter, as was 
discussed in the introduction. We interpret this to mean that the circulation has 
become fully developed by this time. We will show a computation of developing 
circulation later. 

Figures 5 and 6 show the 4 in. series data in a similar manner except that we do 
not show the two smallest Reynolds numbers. The open circles from DL 191 in figure 
5 ( b )  are the same data points shown in figure 3 ( c )  shifted up by one time unit because 
touchdown was at  TIT, = 6 for the 4 in. data and at  TIT, = 5 for the 3 in. data. 

An overview of both sets of radius data shows that before touchdown the 
microburst radius spreads approximately linearly with time with a speed of about 
0.16&. After touchdown the gust front accelerates at  fist to a maximum radial 
velocity of about 0.5& and then decelerates to a nearly constant velocity of about 
0.2&. The maximum spreading rate occurs about one time unit after touchdown. 

Are the DL 191 scalings (T, = 23s, R, = 0.7 km) reasonable 1 We note that the 3 in. 
and 4 in. release heights correspond to 6600 ft and 8800 ft in the DL 191 context. 
Either of these seems appropriate in the light of a 6000 ft cloud base a t  the time of 
this microburst. The times from release to touchdown of T = 5T, and T = 6T0 for the 
3 in. and 4 in. data correspond to 1.9 min and 2.3 min, respectively. These values are 
consistent with the rapidly changing sequences of events described by Fujita (1986), 
in which the microburst descended about 4000 f t  in the minute before touchdown 
and resulted in the airplane crash two minutes later. 

Some comments are in order here regarding the comparison of these measurements 
with the computations. It is apparent from figures 4 and 6 that the numerical 
microburst descends faster than the experiments and from figures 3 and 5 that the 
numerical gust front spreads faster along the ground than do the experiments. This 
occurs because of a difference in the initial conditions. The experimental microburst 
is dropped from a cylindrical container, while the numerical microburst is started by 
releasing a spherical volume. We have tried different initial shapes and have found 
that if the released parcel is flatter on the bottom it falls slower. If the initial radius 
is O.999+0.1p3(cos8) (P, is a Legendre polynomial, B the polar angle), which is a 
little flatter on the bottom and slightly pointed on the top, the numerical descent 
agrees almost perfectly with figures 4 and 6. It falls more slowly because the 
circulation that develops is about 10 % less. Furthermore this same initial condition 
causes much better agreement between the numerical gust front and the experiments 
in figures 3 and 5. We have chosen to use the spherical initial condition throughout 
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this paper because i t  seems improper to fine tune such a model. When calibrating the 
model for aerodynamic use we would use microburst observations near the ground to 
set the appropriate scaling. The exact initial conditions are then less relevant. 

3. Numerical microburst model 
The Biot-Savart law represents the velocity field as an integral over the vorticity 

field. In  our case the flow is irrotational except for vorticity concentrated in a vortex 
sheet a t  the interface between the heavier fluid parcel and the ambient surroundings 
plus a mirror-image vortex sheet below the ground to satisfy the impenetrability 
condition. Because the flow is axially symmetric the vortex sheet is a smooth 
distribution of vortex rings centred on thc axis, and the velocity can be expressed in 
the form 

(3.1) u, ( r ,  z ,  t )  = U, ( r ,  z ;  r’, z‘) y(s’, t )  ds’, s 
U, ( r ,  z ;  r’, 2‘ )  y(s’, t )  ds’, (3.2) 

where U, and U, are the radial and axial velocity components a t  the field point r ,  t 
due to a vortex ring of unit circulation through the integration point r’,z’. The 
integration variable is arclength along the intersection of the surface with a meridian 
plane. We picture the meridian plane in the left half of the intersection plane with 
integration from the top centre of the parcel boundary to the bottom centre (a 
counter-clockwise sense), plus the image integration. The function y is the circulation 
density (counter-clockwise circulation is positive) at the integration point. The 
functions U, and U, can be deduced from the stream function for a vortex ring given 
by Lamb (1932, section 161). They depend on elliptic integrals, which fortunately 
can be approximated by algebraic and logarithmic functions with suitable accuracy 
(Abramowitz & Stegun 1972). 

From (3.1) and (3.2) we can compute the velocity a t  any point in the field, in 
particular on either side of the interface. (The integrals are singular at the interface. 
If they are interpreted as principal-value integrals we will automatically compute the 
average velocity at the interface. However, it is necessary to desingularize the 
integral for mathematical reasons. This will be explained below.) 

The circulation density function can be determined from the Bernoulli equation by 
matching the pressures across the interface by 

where subscript 1 indicates a point on the heavy fluid side of the interface and 
subscript 2 a point just across the interface on the ambient side. In  the Boussinesq 
approximation ( g  large, Ap = p1-p2 small) this gives 



Microburst modelling and scaling 475 

where the straight derivative follows the average velocity of the interface, i.e. 

The circulation density is related to the dipole density ,u by 

aP 
as 

y =  -- (3.7) 

The dimensionless scheme proposed in the introduction is effectively implemented by 
setting the initial spherical radius of the parcel to unity and taking gAp/p = 1. 

Lagrangian nodal points are placed along the interface, the first and last points 
being on the axis. We introduce an index function 6,  which takes integer values at 
the nodes as an integration variable in place of s, using 

and approximate the integral by a midpoint formula, using a fourth-order-accurate 
interpolation formula to establish the midpoint values. The numerical strategy is to 
compute the average velocities at  the nodal points from (3.1) and (3.2), update each 
nodal position r by 

dr u1+u2 
dt 2 
_ -  -- (3.9) 

and use (3.5) to update p. Then +/a6 can be computed by a fourth-order-accurate 
Pad6 approximate formula, to set the stage for the next time step. A fourth-order 
Runge-Kutta scheme is used for time advancement. 

The strategy just described will ultimately fail. Vortex sheets are extremely 
unstable with a growth rate which becomes infinite as the wavelength of a 
disturbance tends to zero. This leads to the appearance of mathematical roll-up 
singularities (not merely numerical instabilities) which develop in a finite time. This 
effect has been studied by Moore (1979), Meiron, Baker & Orszag (1982) and Higdon 
& Pozrikidis (1985). This situation can be avoided by allowing the vortex sheet to 
have a finite thickness. This can be done in several ways. In a physical approach to 
the problem Pozrikidis & Higdon (1985) have studied the evolution of thin vortex 
layers of uniform vorticity . This prevents a singularity by developing a pronounced 
elliptical bulge on the layer at  the place where an infinitesimal sheet would develop 
a singular concentration of vorticity. Effectively, it  develops a vortex with a finite 
core. Another approach, which we will adopt, is to desingularize the kernels in (3.1) 
and (3.2) so that they look like the velocity components of a vortex with a finite core, 
a vortex blob (Leonard 1985) instead of a point vortex. Krasny (1987) has studied 
this method in detail, for two-dimensional problems, as the size of the vortex blob 
tends to zero. Tryggvason (1989) has compared vortex-blob computations with 
vortex-in-cell computations which effectively give the vortex sheet a finite thickness 
because of the finite spacing of the numerical mesh. He showed that similar 
numerical results are obtained by the two methods when the blob size and the mesh 

16 FLM 230 
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spacing are about the same. This gives the interpretation of the vortex blob size as 
a measure of the resolution of the interface. In the problem at hand, where the 
interface would be intricately mixed by small-scale turbulence, we interpret the 
vortex blob parameter to  be the scale of local averaging of the turbulent flow, and 
we will use a rather large value. 

Except for Dahm et al. (1989), whose axially symmetric case was not detailed, 
previous computations by the vortex blob method have been two-dimensional. 
Therefore we have to decide how to desingularize the kernels in this axially 
symmetric application. The kernels in (3.1) and (3.2) are functions of rl and r2, the 
shortest and greatest distance from the field point to the vortex ring (they also 
depend linearly on r - r’, r + r’ and z - 2‘). We desingularize these kernels by replacing 
rl and r2 by 

rl = [ ( r  - r’)2 + (2- 2 0 2  + Plf, (3.10) 

r2 = [ ( r  + r’)2 + (2- 2 0 2  + 6214, (3.11) 

where 6 is the vortex blob parameter. We have included 6 in r2 for consistency when 
the field point is on the axis, where r1 and r2 should be equal. The kernels reduce to  
the usual two-dimensional versions for points near the vortex ring, and the 
modifications are unimportant a t  distant points. 

The nodes are remeshed, sometimes a t  every time step, but usually every ten steps, 
placing them closer together when the circulation density and curvature are greater. 
We have done this by a method proposed by Dritschel (1988), which adjusts the 
density of nodes to fit any prescribed formula. Cubic splines are used for interpolation 
onto the remeshed nodes. 

3.1. Computations 
A series of computations is shown here which demonstrates how the model works and 
how it depends on the blob parameter 6. Figure 7 was computed using 6 = 0.15. An 
initially spherical parcel of unit radius is dropped from rest with its centre initially 
3.71 units above the ground. (This makes the initial centre of gravity the same as in 
the 3 in. series experiments.) In  the six frames shown we can see the rollup of the 
vortex ring as the parcel falls. The heavier fluid develops a slip-surface a t  its sides by 
baroclinic vorticity generation, i.e. from (3.5). This vortex sheet is confined t o  the 
density interface and the circulation which develops causes large deformation of this 
interface, resulting in the penetration of ambient fluid into the top of the heavier 
fluid with quite a large downdraught velocity and the formation of a vortex ring. I n  
the early stages the downflow is in the heavier fluid, but as the vortex ring develops 
the downward momentum is transferred to  the penetrating ambient fluid. While the 
parcel is still aloft the vortex ring begins to cause an outflow below, but the most 
important observation is the entrainment of ambient fluid into a swirl within the 
heavier fluid. This rollup continues after the microburst reaches the ground. As the 
vortex stretches along the ground the vorticity in the core is intensified by the 
stretching, but this is not noticeable in the figures because the core continues to  grow 
by winding. The velocity field is partly that of a finite-core vortex ring but has quite 
a bit of vertical shear due to the vorticity a t  the inner side of the density interface. 

To investigate the effect of 6 we have repeated the computation with 6 = 0.1 and 
0.05. The results are compared in figure 8 a t  T/T, = 4. What one sees in the figure is 
a rapid increase in the number of turns in the primary rollup at 6 is decreased (figure 
8 b  required 199 nodal points). However, there is little effect on the local velocity field 
in and near the vortex core, which resembles solid-body rotation at all 6. The biggest 
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FIGURE 8. Same a8 figure 7 at T/q-I4 showing the effect of changing the &-parameter. 
(a) 6 = 0.10; ( b )  6 = 0.05; (c) 6 = 0.05 with initial disturbance spectrum. 

effect on the velocity field occurs across the inside edge of the vortex sheet boundary. 
As S is made smaller the variation in velocity becomes sharper as the thickness of the 
vortex layer decreases. In the thinnest case (figure 8 b )  the vortex sheet is actually 
unstable ; we see no disturbances because none were excited by the flow nor by the 
numerical scheme. To show this we ran the 6 =  0.05 case again with a wavy 
disturbance on the initial spherical surface. We introduced a spectrum of radial 
cosine disturbances with wavenumbers between 16 and 96 (cosne, n = wavenumber) 
each with extremely small radial amplitudes of lo-' units. This result, computed 
with 399 nodes, is shown in figure 8c .  The rollup of unstable Helmholtz vortices 
occurs where the strength of the vortex sheet is greatest. When we compute for a 
longer time the complexity rapidly becomes too great to resolve with this many 
nodes. We have effectively produced a thicker interface from the growth of vortex 
sheet instabilities. It is our point of view that by computing with a larger S we 
simulate the effect of averaging over these 'turbulent ' fluctuations. The same initial 
disturbance with S = 0.15 produced no instabilities with the spectral initial condition. 

There are several issues which we regard as problems with this model. Even with 
6 as large as 0.15 the duration of the computation is limited by the number of nodes 
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required to describe the rollup of the vortex core. With 121 nodes we cannot 
integrate beyond TIT, = 8. (This only takes 15 s on a Cray YMP.) We can integrate 
to T/To = 10 with 399 nodes. (This takes 100 s to compute.) Too many nodes are 
wasted describing the fine details as the interface winds up in weaker and weaker 
sheets, yet the velocity field is not very complicated. We have no solution for this, 
it is inherent to the method. 

3.2. Surface friction 
The second problem is of a more physical nature. It is apparent on comparing figure 
1 with figure 7 that the computed vortex flattens to the ground too rapidly in the last 
few frames. The experimental microburst maintains its height (against gravity) 
during late times of the outflow. We believe the flattening is caused by the neglect 
of surface friction. This is confirmed by Proctor (1988) who included a Navier-Stokes 
computation without surface friction which had this property. The effect of surface 
friction is to produce counter-vorticity in a turbulent boundary layer. This vorticity 
is swept forward and upward along the gust front as noted earlier. The effect of this 
is two-fold. First, the opposite-signed vorticity decreases the overall circulation and 
thus decreases the large outflow velocity near the ground. Secondly, the counter- 
vorticity, carried ahead of the main vortex, induces an upward velocity on the main 
vortex and elevates the head of the vortex structure. Both effects cause the vortex 
to slow down. In  a vortex dynamics description of this essentially inviscid process, 
the forward motion of the vortex is caused by the interaction of the vortex with its 
image below the ground. Decreasing the circulation and increasing the elevation both 
retard the forward motion. 

The interaction of single-density laminar vortex rings with a solid boundary is 
similar to the description above but they have a greater rebound than we have 
observed. This has been studied experimentally by Walker et al. (1987) and by means 
of two-dimensional numerical simulations by Orlandi ( 1990). 

To simulate the effect of surface friction in the model we have allowed the 
circulation density to be modified by contact with the ground. We think of the no- 
slip boundary condition as producing a vortex sheet along the ground with circulation 
density equal to the slip surface velocity. Of course the image vortex sheet below the 
ground has the opposite sign and cancels its effect. Further, as long as the vortex 
sheet is on the ground it cannot be carried upward because the vertical velocity is 
zero there. However, small-scale turbulence near the ground would cause the vortex 
sheet to thicken into a vortex layer (a turbulent boundary layer). As the vorticity 
diffuses upward it sees an increasingly large upward velocity component which lifts 
it further upward where it is not completely cancelled by its image. In Proctor’s 
computation this forms an upward penetrating vortex layer somewhat behind the 
gust front. In our experiments it appears to be at the front. In  our numerical 
simulation we cannot introduce any new vortex sheets, so we allow this vorticity to 
be part of the original vortex sheet, and we introduce it into the vortex sheet a small 
distance above the ground, simulating the thickness of the boundary layer. We do 
this as follows. We first identify when the microburst is on the ground by noting 
when z, < S,, where zo is the height of the lower centreline node and 6, is a small 
number. Then we identify the node j where the interface separates upward from the 
ground by the criterion z(j) > S,, where 6, > 6,. We assume that the circulation 
density along the part of the interface between j and j, is equal to the radial surface 
velocity vr. Of course most of this vortex sheet is on the ground and has no effect. 
Only the part which sticks up to 6, can have an effect, but as time passes the nodes 
identified at earlier time steps are carried further upward. In the formalism it is ,u 
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FIGURE 9. Same as figure 7 with surface friction; (a+) should be compared with figure 7 ( d - f ) .  

which must be specified, therefore using (3.7) we compute ,u as the integral of y for 
each of the nodes between j and jo ,  i.e. 

(3.12) 

This is done after each time step, replacing the old p-values for each node which 
satisfies the criterion. As time proceeds some of these modified nodes are carried 
upward beyond the separation point. The p-values for these are updated by (3.5) in 
the usual way. 

We have computed with this schcmc using 6, = 0.10 and 6, = 0.15. The results are 
shown in figure 9. In  figure 9 ( u )  one can see the first burst of counter-vorticity 
producing a curl on the interface. Comparing the results frame by frame with figure 
7 a t  the same times it is clear that  the modified vortex is slower and taller. A striking 
result is the comparison of figure 9 ( c )  with the experiment in figure 1 ( e )  where the 
reversed circulation ‘rooster tail ’ is a dominant feature in both figures. These surface 
friction results are sensitive to the value assumed for 6,. It would be desirable to 
relate IS, to an estimate of the boundary-layer thickness. However, we decided to  try 
to  keep things simple. Our objective is limited to showing that the injection of 
counter-vorticity has the correct effect in this model. 
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FIGURE 10. Maximum radius versus time. (a) Initial centre of gravity at 3.71 units, with and 
without friction; ( b )  initial centre of gravity at 4.65 units, with and without friction; (c) initial 
centre of gravity at 10 units compared with data from two runs (0, A) (V10905). 

The maximum radius of the microburst interface, with and without surface 
friction, is plotted versus time from release in figures 3(c)  and 5 ( b )  in order to 
compare with the model experiments. In  each figure the slower curve of the pair is 
the one with friction. Friction becomes effective quite suddenly where the curve 
hooks upward. It is clear from these figures that the numerical gust front advances 
faster than the experimental front. Including surface friction helps in this regard, as 
was intended. As was pointed out in $2, slightly different initial conditions would 
make the agreement almost perfect. These results for 3.71R0 and 4.65R0 are also 
shown in figure 10 along with an additional case released from 10Ro. This high-release 
case, which is essentially without ground effect, corresponds t o  a thermal. This will 
be discussed later. 

In  figure 11 a series of surface profiles, for 3.71R0, is shown with and without 
surface friction. The plots show the radial velocity at the ground versus radial 
position at selected times after release. Surface velocity, which is obscured on the 
vector plots, is the quantity of most interest for aircraft safety. The figure shows that 
surface friction has the expected effect. It decreases the forward velocity of the 
vortex as may be seen by comparing the positions of the peaks in figure 11 (a, b )  at 
the same times, and it also decreases the values of the peak velocities. The negative 
surface velocities which are seen in figure 11 occur under the ‘rooster tail’ a t  times 
later than those shown in the vector plots and appear to be excessive. We are pushing 
the computation to its limit at late times in this figure so these negative velocities 
have smaller reliability. Experimental verification of negative velocities would be 
desirable. 

The important physics which one should note from figure 11 ( b ) ,  and from figure 13, 
for the 4 in. series, is that several time units after touchdown the maximum surface 
velocity is about four times the velocity of advance of the vortex. This is what one 
would estimate from a model of a line vortex advancing in the velocity field of its 
image below the ground. 
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FIGURE 11. Surface velocity versus dimensionless radial coordinate a t  selected times for initial 
centre of gravity a t  3.71. ( a )  Without friction; ( b )  with friction. 

3.3. Insensitivity to initial height 
We have found that these results are approximately independent of the release 
height. Figure 12 shows vector plots of a microburst released from 4.65R0 
(corresponding to the 4 in. series), with surface friction. Comparison with figures 7 
and 9 shows that the figures do not correspond time by time; however, at  times when 
the fronts are a t  about the same radial positions (which occurs approximately one 
time unit later for the 4.65R0 case, compare figures 12 (a-c) with 7 (a+) and figure 12 
(d - f )  with 9(a-c)), they look similar. A similar observation may be made by 
comparing the 4.65R0 surface velocity plots in figure 13 with those in figure 11 ( b ) .  In 
figure 10 a shift by one time unit gives approximate coincidence of the 3.71R0 and 
4.65B0 cases, and this is also approximately true in the model experiments shown in 
figures 3(c) and 5 ( b ) .  

The reason for this similarity is that the circulation around the descending vortex 
ring develops rapidly (in about 3 time units) to a constant value while the microburst 
is still aloft for these cases. The vortex then proceeds with constant strength, and has 
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FIQTJRE 13. Surface velocity for 4.65 initial centre of gravity. with friction at selected times. 
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FIQURE 14. Dimensionless circulation and distance to the ground versus time. (a) Initial centre 
of gravity 3.71; ( b )  4.65; (c) 10.00. 

a nearly constant velocity until it  nears the ground. This may be seen in figure 14 
where the circulation as a function of time and the distance above ground are shown. 
The curves labelled r are the dimensionless circulation around the developing 
vortex, evaluated from the difference in the dipole density ,u between the bottom and 
the top of the interface at  the centreline. Three cases are shown : 3.71,4.65 and 10.00 
are the initial dimensionless elevations of the centres of gravity of the microbursts. 
The third case is initially high enough that it is essentially without ground effect for 
the time range shown. The circulations are nearly the same for all three cases, with 
final values between 5 and 5.2 units. On the same figure we show the distance of the 
bottom of the interface above the ground to emphasize that the circulation develops 
while the microburst is aloft. These curves also show portions with approximately 
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constant velocity of descent. One should also note from figure 10 that after the 
circulation reaches its asymptotic value, but before the microburst touches ground, 
the radius of the microburst increases approximately linearly with time. This causes 
the noticeable linear regions on the radius profiles before touchdown. In the absence 
of ground effect the radial growth would remain linear for a longer time. The 
experimental points on figure 10 confirm this for the high-release case. The difference 
between two microbursts released from different heights (but not too different), and 
observed after full development at the same distance above the ground, is a small 
difference in radius and a different amount of winding in the core ; the circulations 
and general dispositions are about the same. It follows that their future motions will 
be similar. 

A linear increase in radius was observed in computations with vortex ring bubbles 
(Lundgren & Mansour 1991). A buoyant vortex ring develops naturally from a 
released spherical gas bubble, in a manner similar to the microburst, with a jet of 
liquid penetrating through the bubble from behind to form a torroidal bubble of 
constant circulation. The dimensionless circulation that develops is about the same 
as for the microburst, about 5.6 when the bubble is large enough to neglect surface 
tension. (The length- and timescales are the same as for the microburst but with 
Ap/p = 1.  The Boussinesq approximation was not used for the bubble computation.) 

The radial spreading seen in figure 10, especially for the high-release case, can be 
explained by vortex dynamics as in the bubble paper, by balancing the downward 
excess weight by an upward Kutta-Joukowski lift. Kutta-Joukowski lift is the 
perpendicular force on a vortex in a crossflow. In this case the crossflow velocity is 
the radial velocity vr of the vortex ring and the force balance gives pvr r = w, where 
w, the excess weight per-unit-length of vortex core, is given by 

2 d , w  = @R:gAp, (3.13) 

R, being the radius of the vortex ring. This balance gives 

2 R3 Ap 
9- 2, =-L 

3 R , r  p 
or, in dimensionless form 

2 1  
3R,T' 

2, =-- 

(3.14) 

(3.15) 

This rate of spreading, of about AR, = per unit of time, corresponds closely to that 
seen in figure 10. 

The high-release case corresponds to model thermal experiments performed by 
Scorer (1957). Scorer followed the motion of a released dense solution by taking 
motion pictures in a manner similar to our experiments, but for a longer period of 
time, and his emphasis was on long-time behaviour. He made no note of an early 
stage in which the spreading was linear in time. The results shown in (3.14) is the 
same as obtained by Turner (1957) by the impulse method described in the 
introduction which resulted in (1.8). 

4. Comparison with microburst observations 
Wilson et al. (1984) have studied the data from a Doppler radar network near 

Denver and identified and examined about 70 microbursts which occurred during the 
summer of 1982. They have distilled from this data the chronology and 
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characteristics of an ‘average’ microburst, which we list below in a form interpreted 
for axially symmetric flow. The time ti below is the time that divergent surface 
outflow first became apparent on the radar system. 

ti - 5 min : 
t ,-2 min: 

t ,  min : 

the downdraught is above 2 km, no divergence ; 
the downdraught is below 1 km and has begun to diverge horizontally, 
roll vortices may be present ; 
the downdraught speed has increased to about 10 m/s, the downdraught 
radius is 0.5 km, the maximum radial velocity is 6 m/s located 0.9 km 
from the centre; 
the divergent outflow has spread horizontally and the maximum radial 
velocity has peaked a t  12 m/s at  a radial position of 1.6 km; 

t i+5 min : 

t ,  + 10 min : the horizontal flow has weakened and spread to a radius of 3 4  km. 

The maximum surface velocity doubles to its peak in about 5 minutes. The peak 
value is about 20% larger than the earlier maximum downdraught velocity. 

This information can be used to calibrate the numerical model for an ‘average’ 
microburst. The radius of the downdraught in the model is about R, and the 
maximum downdraught velocity is about 2R,/T,. Using 0.5 km and 10 m/s for these 
values, noted at t i ,  we establish R, = 0.5 km and T,  = 100 s. 

We can use this scaling to compare the outflow characteristics predicted by the 
model with the ‘average’ microburst. The peak radial velocity in the model is 
2.2RO/T, at a radius of 3.5R0. (This occurs a t  T/T, = 8.5 for the 3.71 case and at  
T/T, = 10 for the 4.65 case, both with friction.) Using the scaling established above 
this gives a peak velocity of 11 m/s at 1.75 km which compares with the values 
12 m/s a t  1.6 km noted at ti + 5  min. The time ti which is 5 min earlier, or 3 time units 
earlier with T,  = 100 s, corresponds to TIT, = 5.5 for 3.71 and to T/T, = 7 for 4.65. 
The results differ a bit for these two cases. For 3.71 we find the maximum velocity 
is 1.3 units at a distance of 1.5 units corresponding to 6.5 m/s a t  0.75 km, while for 
4.65 we find the maximum velocity is 1.6 units a t  a distance of 2 units or 8 m/s a t  
1 km. The ‘average’ microburst has 6 m/s a t  0.9 km. The differences here are 
relatively small if one takes into account that the surface velocity is changing very 
rapidly with time in this range and the result depends strongly on the estimate for 
T,. The model has done remarkably well for these comparisons because we have 
determined the scaling so that the numerical results agree with early time 
observations instead of determining the scaling to agree with our experiments as we 
did for the DL 191 comparison. 

5. Conclusions 
A simple microburst model consisting of a single released volume of heavier liquid 

falling onto a horizontal plane was investigated experimentally and numerically. 
Two geometrically similar microburst flows with different values of Ap develop at 
different rates, the one with the larger Ap falling faster. An inviscid scaling law which 
absorbs Ap and gravity into the timescale was used for comparing such flows. 

Experimentally simulated microbursts, using salt water releases into fresh water, 
had good repeatability if care was taken when piercing the retaining membrane. 
Results for the radius of the microburst gust front, taken from video recordings of 
the events, compared well when scaled with the length- and timescales proposed and 
were found to be independent of Reynolds number when it was larger than 3000. 
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These results were compared with data from the DL 191 microburst (Fujita 1986) to 
establish an effective scaling of R, = 0.7 km and T, = 23 s for this microburst. 

A numerical model, based on inviscid vortex dynamics, gave a detailed picture of 
the development of a microburst which supplements our incomplete measurements. 
As the heavier fluid begins to accelerate downward a strong shear layer forms 
between it and the lighter fluid which rises around it. The vorticity in this shear layer 
forces lighter fluid to penetrate through the heavier fluid from above, forming a 
heavy-fluid vortex ring which entrains lighter fluid by winding. In this process, the 
heavier fluid at first gains momentum by accelerating in the gravitational field, but 
as the vortex develops, momentum is transferred to the lighter fluid until it mostly 
resides in a vigorous downflow of lighter fluid through the aperture of the vortex ring. 
The circulation about the vortex ring rapidly increases, reaching a constant value 

r = 5Ri/T,, 
while the microburst is still aloft. This causes the vortex to descend with a nearly 
constant velocity (until it gets too close to the ground) while spreading its radius 
approximately linearly with time, gaining momentum by increasing its mass instead 
of accelerating. 

If we use the effective scaling of DL 191 noted above we estimate the circulation 
of that microburst to be f = 0.11 km2/s. This is a measure of its strength. 

We compared the numerical results with the properties of an ‘average ’ microburst 
extracted by Wilson et al. (1984) from Doppler radar return data from 70 microbursts 
observed near Denver in 1982. Gross features such as the relationship of the peak 
outflow velocity to the maximum downdraught velocity, the radial position of the 
peak outflow velocity and the time required for the maximum outflow velocity to 
double were in agreement. The scaling for the ‘average’ microburst was R, = 0.5 km 
and = 100 s. The circulation of the ‘average ’ microburst is thus r = 0.0013 km2/s, 
much weaker than DL 191. 

This work was supported by NASA-Ames Research Center, through a NASA- 
Ames University Consortium Agreement, contract NCA2-329. We also acknowledge 
a grant from the University of Minnesota Graduate School. 
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